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Theory of Ostwald ripening invoking Taylor

analyticity and a Le Chatelier stability principle

J. S. KIRKALDY
Brockhouse Institute for Materials Research, McMaster University, Hamilton,
Ontario, Canada L8S 4M1

As an alternative to a variety of algorithms, and particularly to the much-favoured
Lifshitz-Slyozov-Wagner (LSW) mathematical method of regularization of a coarsening
precipitate manifold to hydrodynamic continuity controlled locally by quasi-steady state
volume diffusion, we have reformulated the asymptotic, terminally discrete
time-dependent particle radius distribution function f so as to be consistent with an even
Taylor expanded free energy density. This consistency is necessitated by statistical isotropy
in a coarse-grained phase space, a condition violated by the LSW continuity condition.
Stability is demonstrated through the application of a closely related Le Chatelier Principle
which also appeared in the LS formulation. Wagner’s equivalent was to assume
separability of variables as a scaling postulate. The coefficients in our analytic distribution
function and the appropriate order parameter are established through Wagner’s quadratic
limit as the radius goes to zero and the requirement that the largest particle which
terminates the stable distribution must also have the maximal surface velocity. Our
smoothed asymptotic particle radius distribution function generates the standard t1/3

scaling but is sufficiently different than that of LSW and its generalizations as to be easily
distinguishable experimentally. Indeed, the experimental distribution functions are
demonstrated to strongly favour the present formulation. Since the explicit volume fraction
of particles ϕ does not enter into our treatment and the statistical mean distance between
particles goes as (1 − ϕ)1/3, the onset of functional violations due to diffusion impingement
should only occur as ϕ exceeds 0.3, again in accord with many experiments.
C© 2002 Kluwer Academic Publishers

1. Introduction
Many models have been offered for the isothermal
asymptotic coarsening of a multidisperse array of
near-spherical precipitates [1–5], including the ele-
gant and broadly recognized 1962 Lifshitz-Slyozov-
Wagner (LSW) theory [6, 7], but none of these can be
claimed as an accurate predictor of the radius distri-
bution function f . As recently as 1994 a new theory
of Küpper and Masbaum based upon an analogy with
the Cahn-Hilliard equation for spinodal decomposition
[8] has been presented. For two-dimensional computa-
tional modelling this exhibits strong disagreement with
the LSW distribution and this in the direction often
favoured by the experiments.

The familiar Ostwald ripening free boundary pro-
cess, which is driven by the higher solubility of the
smaller particles [1, 6, 7], is thermodynamically related
to coarsening of order-disorder [9, 10], grain boundary
[11] and spinodal arrays [12]. While grain boundary
and precipitate coarsening, and multidisperse order-
disorder and spinodal coarsening are distinguished by
discrete and diffuse particle boundaries, respectively,
the dominant asymptotic process is in all cases dis-
sipation of surface free energy. We note in particular

that because of the coarse-grained phase space in the
present problem at the asymptote, strong distribution
differentiability as incorporated in the LSW continu-
ity equation of hydrodynamic origin [6] is in all cases
absolutely denied in the approach to a largest particle
distribution terminus.

Our main point, shared with others [5, 13, 14], is that
the LSW algorithm based upon a very strong differen-
tial continuity relation has failed to sufficiently recog-
nize the symmetry, discrete and fluctuating elements of
the process [5, 13–15] and for this reason fails to fully
accommodate the experimental record.

In LSW theory following Greenwood [1] the start-
ing point is a quasi-steady solution of the Fick diffusion
equation (Laplace’s equation) for a single spherical par-
ticle with boundary condition corrected for capillarity.
Such an approximation is valid for low initial supersat-
uration. In Wagner’s version which follows the previ-
ously outlined convention a very strong differentiability
condition which could be fully appropriate to a micro-
scopically disperse system (the continuity equation) is
applied to the conjectured distribution function f (R, t)
for the mesoscopically multidisperse manifold in ra-
dius R and Ṙ and this accommodates though does not
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prove the validity of separation of variables and statisti-
cal self-similarity (SSS). LS also adopted the continuity
equation but replaced the separability assumption by a
Le Chatelier stability condition arriving at the same dis-
tribution function and a t1/3 aging relation, thus accom-
modating SSS and establishing the fluctuation roots
of such a moderation principle in kinetics (compare
deGroot [16] or Prigogine [17]). In our approach, we
combine what we regard as the best features of Wagner
and LS (Greenwood’s first order capillarity correction
and its asymptotic implications and Le Chatelier sta-
bility, respectively) but eschew the continuity equation
which with Kahlweit and Mullins [18, 13] we regard as
too strong for a Brownian-like, fluctuating system. We
replace this constraint by an explicit Landau symmetry
for a statistically isotropic mesoscopic system implying
a temporally asymptotic free energy density in R-space
as an even Taylor expansion in an order parameter pro-
portional to the particle surface area, or R2, together
with the stability requirement that the largest and most
probably the fastest growing particle terminate the dis-
tribution function. Were this intersection not the most
probable or average case there is the potential for long
range, low frequency oscillations which denies stability
and the assumed isotropy or a contradiction in which
flux is locally directed from the lower to higher chemi-
cal potential. As in LS, asymptotic SSS then proves to
be a derived characteristic. This procedure and outcome
offers an elementary quantitative pedagogy of the class
familiar in the coarsening theories of order-disorder,
spinodal decomposition and grain growth.

2. The useable parts of the LSW structure
Wagner [7] following Greenwood [1] offered a trans-
parent development of the interface velocity relation
starting with a typical ripening sphere in a dilute array
with the local Laplacian or quasi-steady approximation
of the diffusion field in the first instance taken as inde-
pendent of the far field concentration, the latter being
introduced indirectly through the first-order effect of
capillarity on the interface velocity, viz.,

Ṙ = dR

dt
= 2β D

Rc R

(
1 − Rc

R

)
(1)

where D/R is the characteristic volume diffusion in-
terface velocity which is augmented by supersatura-
tion and decremented by capillarity. Note for subse-
quent reference, the identity of this form to the steady
state, capillarity-limited front velocity of lamellar eu-
tectoids [19]. Ṙ can be positive or negative depending
as to whether R is greater than or less than an average
value of critical Rc as determined by the effective time-
dependent far field supersaturation. The Greenwood [1]
value of

β = σCoV 2
m

NAkT
(2)

was also adopted by Wagner [7] where σ is the sur-
face tension, Co is the solubility of a pure precipitate in
mol/unit volume and Vm is the molar volume.

In this version of the problem as forced to the con-
tinuum, the alloy composition remains implicit within
initial Rc or the fixed asymptotic volume fraction which
can be arbitrarily chosen in accord with the dilute con-
centration range of the phase diagram. Since we are
only concerned here with long time behaviour, this in-
formational shortfall is of no interest. The surface ten-
sion σ as an effective quantity may contain significant
contributions from solution free energy, gradient and
strain energy, and D may contain contributions from
gradient and strain energy. In our model for the distri-
bution function all such thermodynamic contributions
are combined within a Landau-type Taylor expansion
for the free energy density in R-space. As in LSW, this
structure can be corrected for solid state precipitates
which are line compounds [7, 20, 21]. By convention,
insisting upon sufficient volumetric diluteness of the
actual array and therefore of a weak but non-zero ini-
tial supersaturation, one takes a sample unit volume
sufficiently large that it retains a very large number of
particles throughout an experimental time in the hopes
that suitable array averages can be defined for R, Ṙ and
Rc, the last average quantity implicitly serving the func-
tion of a Langevin fluctuation term as in multidisperse
processes such as spinodal decomposition [22, 23].

Proceeding phenomenologically, LSW included the
approximate asymptotic volume fraction invariance,
and as noted invoked the hydrodynamic continuity con-
straint which we regard as too strong for a fluctuat-
ing mesoscopic process (compare Mullins [13, 14] and
Refs. 2, 5 and 8). In general, each nucleated parti-
cle designated by R in a more-or-less random array
has a distinct environment which need not submit to a
uniform matrix composition with a well-defined Rc.
Indeed, while this environment necessarily shows a
continuous decrease in the very small average supersat-
uration it will have to sustain substantive upward locally
pulsed concentration perturbations due to the roughly
half of the particles which are dissolving, and because
of the inhomogeneity a low amplitude Brownian ran-
dom walk and/or surface waves must accrue.

3. An analytic thermodynamic extension
of Wagner’s volume diffusion theory

We will now demonstrate that there is an alternative
way of developing the distribution function f (R, t) per
unit of volume per unit of R within Ginzburg-Landau
theory based upon a Taylor expansion of the free energy
density [9, 24] where R̄ is an average radius consistent
with but not necessarily equal to Rc as in LSW. Refer-
ence to Fig. 1 will now be found helpful in proving that
for R → 0, the distribution function f varies as R2. We
know a priori that f must vanish for some largest R
since the maximum total fractional volume of all parti-
cles is some number �1. After Wagner, we also know
that the average number of particles per unit volume is

z =
∫ ∞

0
f (R, t) dR (3)

and the average loss of z in time is given by the number
of particles per unit volume which converges to R = 0
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Figure 1 Schematic of f (R/Rc) and Ṙ(R), the latter according to
Wagner [7]. The normalized perturbation of f to f ′ is designated by
the dashed line.

per unit time, i.e., via the limit value of (− f Ṙ) at R = 0,
viz.,

−dz

dt
= − d

dt

∫ ∞

0
f (R, t) dR

= −
∫ f

0
Ṙ d f = − lim

R→0
( f Ṙ) (4)

In the limit of R � Rc from Equation 1 on the right

Ṙ = −2β D

R2
(5)

It is highly appropriate here that Rc, which is an ill-
defined quantity, disappears from the limiting value of
Equation 1, whence as R→0

−dz

dt
= − lim

R→0
( f Ṙ) = lim

R→0

2β D

R2
f (6)

Since according to Wagner (assuming differentiability)
dz/dt must have a finite value at the limit, it follows
that f (R, t) increases proportionately as R2, already
represented schematically in Fig. 1. We emphasize that
this result is independent of the LSW continuity con-
jecture. Further to this we propose to invoke Landau
symmetry of the total asymptotic free energy density
h in R-space as an average defined by the distribution
function, which on account of statistical invariance un-
der the exchange of any r → −r requires that it be an
analytic even function of an appropriate order param-
eter ξ truncated for low to moderate supersaturations
at the quartic, and furthermore that the single largest
particle which defines f = 0 must also be the fastest
growing. A qualitative construction of f consistent with
Wagner’s Ṙ → 0 limit and the maximum possible Ṙ
according to Greenwood is given by the solid f curve
in Fig. 1. As we shall see, the plausible choice of or-
der parameter, ξ = (R/2Rc)2, assures h ∼ ξ f is an even
function near R = 0 and dictates that the general form
of h be a quartic at the next level of approximation for
R > 0.

This structure is not unique since it can also be ac-
commodated, due to monotonicity between f (R) and

Ṙ(R), for all f cut-offs in the range Rc → 2Rc, e.g.,
f ′ in Fig. 1. However, the only one which will assure
consistency asymptotic to the constant maximum value
of the particle volume (approximately zero supersatu-
ration [13]) is that with the 2Rc cut-off as we shall now
demonstrate. Proceeding in the fluctuation context, and
analogously to Mullins’ rephrasing of LSW [14], if we
consider any perturbation to normalized f ′ by uniform
contraction along the R axis subject to particle volume
and number conservation the response is always to sta-
bilize the higher R configuration. For example, for any
lowered cut-off a larger fraction of the array must be dis-
appearing despite a contradictory decreased maximum
size and growth rate. On the other hand, an increased
cut-off consistently implies a lower fraction disappear-
ing and increased maximum size and growth rate. For
R = 2Rc the perturbation to a higher cut-off has certain
smaller particles growing to the disadvantage of the
largest one which violates the sign of the known chem-
ical potential difference, so this is the stability point.
Consistently, this defines the potential corresponding
to the dynamical Le Chatelier Principle as the dissipa-
tion rate, for which an externally constrained system in
linear irreversible thermodynamics is minimal [16, 17].
For the present autonomous non-linear system, it is nec-
essarily maximal because maximality in the surface ac-
cumulation rate of a very few large particles at constant
volume must be accompanied proportionately by the
dissipation of the surface area of a much larger number
of surface-rich small particles.

The designation of stability at the 2Rc maximum of
Ṙ at fixed Rc in Equation 1 defines the quasisteady
scaling law, R = 2Rc, so upon substitution in (1), we
can integrate over Ṙc so as to generate the asymptotic
t1/3 scaling law, originally estimated in this way by
Greenwood [1], viz.,

Rc = (3β Dt/4)1/3 (7)

The coefficient 3/4 is to be compared with the value 8/9
in the LSW equation for Rc so the results are closely
equivalent.

As pointed out some time ago [25], in viewing
this as a free-boundary problem with the degener-
acy subsumed by the unspecified initial condition, the
weighted quasi-steady dissipation rate for an array at
Rc(t) can be estimated as proportional to d(R Rc)/dt
which also maximizes at R = 2Rc. This result is in
accord with the inferences from the gradient flows
methodology [26, 27] or from a maximum in the path
probability [25, 28, 29]. This viewpoint is analogous
to that in the free boundary, capillarity-controlled, two-
dimensional spacing problem of eutectoids with its ex-
perimentally verified maximal dissipation and equiva-
lent Le Chatelier Principle formulations [19, 30, 31],
anticipated by the sharing of equation form (1).

4. The relative distribution function, f
Repeating the proposed argument for emphasis, the
next step in the construction is to note on account of
the R = 2Rc cut-off and Wagner’s R = 0 limit that f
must be designated as a function of ξ = (R/2Rc)2, thus
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to be recognized as the explicit order parameter for the
smoothed surface free energy increments. Then on ac-
count of the assumed statistical isotropy or symmetry
of the manifold we can demand that the asymptotic
relative free energy density function h in R-space be
an even, lowest order, truncated Taylor expanded quar-
tic, now used to evaluate the general free density h in
R-space, including relative f (ξ ) as a multiplying factor
to the order parameter ξ at constant t , viz.,

h ∼ f (ξ )(R/2Rc)2 (8)

With the limits already established for f , and the expec-
tation through f that for R incrementally greater than
2Rc, h = 0, the coefficients in the quartic are uniquely
established, viz.,

h ∼ ξ 2 − ξ 4 =
(

R

2Rc

)4

−
(

R

2Rc

)8

(9)

from which we deduce relative, temporally scaled

f = 	(t)

(
R

2Rc

)2
[

1 −
(

R

2Rc

)4
]

(10)

The solid curve in Fig. 1 was calculated via this form.
The inaccuracies inherent in the truncation procedure
(which are the primary ones in this methodology) are for
the most part compensated by forcing h and f to their
explicitly designated terminations. An analogous self-
correcting procedure is found in the analytic free energy
density pertaining to mean field spinodal decomposi-
tion with a symmetric miscibility gap. Here the double
well density truncated at the quartic can as an approxi-
mation be corrected through the fourth order coefficient
by forcing the solubility to zero at T = 0 K (the Third
Law). Note here that ξ fLSW through Wagner’s theorem
(6) is again even as R → 0 but loses this character as
R → Rc and above, thus violating the symmetry of the
statistical manifold, the direct evidence lying in the flat
tail of fLSW (Fig. 2) which is inconsistent with statisti-
cal concepts.

Figure 2 Comparison of present distribution function f with LSW the-
ory and Kahlweit’s data set [33] for isoamyl alcohol droplets in water (•).

Note from (9) that it is salutary to the construction
that the largest particle (R = 2Rc) persists asymptoti-
cally in quasi-equilibrium with the highly depleted but
non-zero average supersaturation (h � 0).

The final step is to evaluate the relative function 	(t)
such that the average particle volume is time invariant
[7], viz.,

V =
∫ 2Rc

0

4

3
π R3 f dR

=
∫ 2Rc

0

4

3
π R3	(t)

(
R

2Rc

)2
[

1 −
(

R

2Rc

)4
]

dR

= constant (11)

from which upon substitution of (7)

	(t) ∼ t−4/3 (12)

in agreement with Wagner [7] at the asymptote. Fur-
thermore, since

�F = σ

∫ 2Rc

0
4π R2 f dR (13)

our value of f and (12) combined yields

�F ∼ t−1/3 (14)

representing a plausible slow relaxation of this broadly-
recognized Lyapunov functional [8, 32] in accord with
the Second Law on the isotherm. LSW implies the same
result.

5. Experimental closure
From the distribution function f in Equation 10, we
obtain R̄ = 1.312Rc as compared to the LSW R̄ = Rc.
Our cutoff is at R/R̄ = 1.52 as compared to 1.5 for LSW.
The maximum of f is at 1.158 as compared to 1.135
for LSW, the summary comparison being represented
in Fig. 2 containing data of Kahlweit [33]. The strange
continuum LSW tail in this figure associated with a can-
cellation of singularities [7] appears to be indicative of
a constraint which as applied to a small number of dis-
crete particles is necessarily uninterpretable in relation
to experiment.

The revised R̄ translates to a rate constant which is
1.1 times that for LSW. It is to be emphasized here
that our development does not and could not explicitly
depend on the asymptotic volume fraction ϕ because
the composition was not explicitly entered as an ini-
tial condition. Since the relative statistical mean dis-
tance between particles goes as (1 − ϕ)1/3, we estimate
via the binomial theorem that diffusion impingement
should start to seriously violate the assumptions lead-
ing to Equation 1 at ϕ = 0.3. There is little experimental
evidence in favour of LSW as ϕ → 0 nor of the change
in the distribution function and the strong increase
in rate constant with ϕ attributed to theory [34, 35].
Fig. 3 superposes our invariant distribution function
on Ardell and Nicholson’s data for A1-Ni covering a
ϕ = 0.1–0.2 range [36]. The agreement for f is every-
where excellent, as was the Fig. 2 case from Kahlweit.
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Figure 3 Ardell and Nicholson data set [36] for Ni-Al alloys compared to LSW (- - - -) and present theory (-----). The volume fractions from bottom
to top are 0.102 and 0.198, respectively.

While coherency strain is not accounted for, this should
enter invariantly through the diffusion coefficient [12]
and accordingly only modify the rate constant for R̄.
The failure to correct D and σ positively as specified
above may be the reason why Ardell [35] finds in a sur-
vey that the experimental rate constant for R̄ scatters
over a factor up to 4 times larger than our predicted
value. In our quantitative analysis of scaling in cellular
solidification, which is related to the eutectoid spacing
problem, we found an amplification of the effective sur-
face tension due to near boundary solution free energy
by a factor of 6 [25].

6. Discussion
It was Wagner alone who considered the case of in-
terface reaction control [7] which by convention rather
unrealistically specifies the absence of solute gradients
in the matrix. This constraint has the effect of every-
where uniquely equating near and far field concentra-
tions thus eliminating a statistical degree of freedom.
As Mullins has clearly implied [13, 14], the LSW use of
the continuity equation for the volume diffusion case,
makes the problem deterministic rather than accommo-
dating to the fluctuations implied by the actual physics.
Here we conclude that for chemical reaction control
as in order-disorder the continuity equation may more
validly obtain and Wagner’s derivation of a t1/2 asymp-
totic scaling law becomes algebraically valid. However,
we are not aware of any experimental counterpart to this
model.

The distinction between this and the LSW approach
to removing the degeneracy associated with an unspec-
ified initial condition hinges mainly upon how strongly
the discreteness of the particle distribution is smoothed
or regularized. In the LSW case the hydrodynamic con-
tinuity equation is forced deterministically by conjec-

ture upon the manifold, and at least for LS theoreti-
cal closure is realized through perturbation arguments
which is inconsistent if not contradictory. While many
investigations have regarded continuity as a rigorous
constraint [3, 4, 7, 35, 37] others have properly seen
this as an approximation of undetermined precision
[2, 5, 8, 18]. From a general view point, it first appeared
to us to be an overdetermination, invoking two conser-
vation relations where only one pertaining to the solute
in general expressed asymptotically as a constant vol-
ume fraction is extant. However, the more cogent defect
is that the even statistical symmetry of the free energy
density ξ f (R) associated with the smallest particles is
not shared by the families of larger particles since ξ fLSW
is not even. Accordingly, the LSW h(R) and f (R) are
statistically defective as R → 2Rc as evidenced by the
experimentally meaningless tail in Fig. 2 and the rel-
atively sharp peak in f . In our case, the phase space
is assumed to be mesoscopic and statistical, seeking
asymptotic, quasi-steady stationarity in a free energy
density of essential Landau symmetry [38] and this is
also represented operationally by the perturbation or Le
Chatelier Principle.

It does not appear to have been sufficiently empha-
sized that for all multidisperse coarsening systems there
must exist a late temporal state of few particles where
a distribution function loses meaning [8]. We have ac-
cordingly meant by an asymptotic state that which has
already lost a very large number of particles per test vol-
ume in reaching the asymptote but still retains a very
large number. Even so, every real system is finite so
there must always exist an individual largest particle
and this discreteness speaks to the ultimate imperfec-
tion of the concept of a continuous distribution function.
The problem of discreteness is more acute in the case
of Ostwald Ripening as compared to grain growth and
multidisperse ordering with their non-conserved order
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parameters for as a consequence of solute conserva-
tion the total particle volume approaches a constant
asymptote. The logic then forces us to conclude at the
asymptote that if assuming strong continuity and fixed
time we theoretically try to reduce the volume fraction
or composition incrementally at fixed particle number,
particles must be lost, which is a contradiction. In other
words, there is no analytic continuation to zero volume
fraction, as attribution to LSW theory of a rigorous
limit often implies, but experiments deny. This under-
lines our secondary conclusion: that SSS must within
the dilute specification extend in the space of volume
fraction as well as along the time axis (cf. Fig. 3).

Considerable effort has been expended in develop-
ing supposedly more complete and sophisticated com-
puter algorithms which encompass the pre-asymptotic
range of the precipitation process and these are offered a
role as generators by curve-fitting for accurate measures
of effective surface tensions and diffusion coefficients
from structure factor data. The particular version due to
Wagner and Kampmann [39] is, however, deterministic
and was constructed so as to be asymptotic to LSW so
would exhibit the same discrepancies as in Figs 2 and 3
(cf. their Fig. 4 – 42).

In conclusion, the pedagogic issue addressed here
with some success pertains to a method of ascertain-
ing the most quantitative analytic approximation to the
properties of a three-dimensional mesoscopic fluctuat-
ing phase space with discrete limits and its associated
asymptotic domain of self-similar scaling.

Acknowledgements
The author is grateful to Professor Alan Ardell of the
University of California (LA) for his critical comments
and to Dr. George Savva for helpful discussion and
assistance with the graphics.

References
1. G . W. G R E E N W O O D , Acta Met. 4 (1956) 243.
2. S . -K . C H A N , Ber. Bunsenges. Phys. Chem. 84 (1980) 745.
3. P . W. V O O R H E E S and M. E . G L I C K S M A N , 32 (1984) 2001.
4. J . H . Y A O , K. R . E L D E R , H . G U O and M. G R A N T , Phys.

Rev. B45 (1992) 8173.
5. A . B H A K T A and E . R U C K E N S T E I N , J. Chem. Phys. 103

(1995) 7120.

6. I . M. L I F S H I T Z and Y. Y. S L Y O Z O V , J. Phys. Chem. Solid
19 (1961) 35.

7. C . W A G N E R , J. Elektrochem. 65 (1961) 581.
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